What can first-year students expect in the Chemistry Graduate Program?
During their first two years in residence, students take five graduate lecture courses (25 units) in their specialization. The standard course load, which includes lecture courses, seminars, research courses and independent studies, is three courses per quarter (15 units). Doctoral students are required to work as Teaching Assistants for at least three quarters, usually in the first year. Students choose a laboratory and begin dissertation research by the spring of their first year.

Do you have any diversity fellowships or other opportunities specific to your program?
Newly admitted students are nominated by the department’s faculty admissions committee for several competitive fellowships: Eugene Cota Robles Fellowships, Tuition Fellowships, Regents Fellowships, Chancellor’s Fellowships.

What type of support do first-year graduate students in your program receive?
The department supports admitted first-year Ph.D. students with Teaching Assistantships (TA) or fellowships, or a combination. Continuing Ph.D. students are supported through Teaching Assistantships or Graduate Student Researcherships (GSR), depending on the availability of each and student academic progress. These positions pay a salary and University tuition.

When are graduate applications due for your program?
December 15th

Who can I contact for more information?
Janet Jones, Graduate Program Coordinator
(831) 459-2023, jajones@ucsc.edu

http://www.chemistry.ucsc.edu/academics/graduate/
Alex Ayzner Organic semiconductors; energy and electron transfer dynamics; conjugated polymer physics; supramolecular assembly; charge transport in organic thin films

Ilan Benjamin Theoretical chemistry, molecular dynamics of chemical reactions in liquids and at interfaces

Roberto A. Bogomolni Biophysical chemistry, photobiology, light energy conversion and signal transduction in biological systems

Rebecca Braslau Synthetic organic chemistry using free radicals; nitroxides, nitroxide-mediated polymerization, designed polymers, nitroxide-based sensors

Shaowei Chen Synthesis, characterization, and manipulation of novel functional nanomaterials (metals and semiconductors), their long-range ordered assemblies and related nanoscale electron transfer; applications in fuel cells, photovoltaics and electronic devices

Ölöf Einarsdóttir Time-resolved spectroscopy, biophysics and bioenergetics, ligand binding and electron transfer dynamics of redox metalloproteins, heme-copper oxides, proton translocation

Theodore Holman Biochemistry, bioinorganic chemistry, enzymology, inflammation, regulation, drug discovery and design

Joseph P. Konopelski Synthetic organic chemistry; heterocyclic chemistry, bio-organic chemistry

Yat Li Materials chemistry, nanomaterials, solar energy conversion applications, nanoscale electronics and photonics

Roger Linington Marine natural products, drugs for neglected diseases, chemical biology, chemical probes

R. Scott Lokey Organic chemistry; combinatorial synthesis, biotechnology, molecular cell biology

Pradip K. Mascharak Bioinorganic chemistry, design of antitumor drugs, modeling of active sites of metalloenzymes, design of catalysts for hydrocarbon oxidation, studies on intermediates in non-heme oxygenase chemistry, design of NO-donors for photodynamic therapy

Glenn L. Millhauser Electron spin resonance; nuclear magnetic resonance, melanocortin receptor signaling, agouti and agouti-related proteins, prions, solid phase protein synthesis

Scott Oliver Materials chemistry, microporous materials, polymer templating, self-assembled monolayers for thin film devices

Carrie Partch Biochemistry and biophysics, nuclear magnetic resonance spectroscopy; molecular mechanism of circadian rhythmicity

Jevgenij Raskatov Chemotherapy; small molecule inhibitors of cancer and inflammation; genome-wide transcriptomics; organometallic chiral ion pairs, reaction mechanisms

Seth Rubin Biochemistry and biophysical chemistry; molecular mechanisms of cell cycle regulation, nuclear magnetic resonance, x-ray crystallography

William G. Scott Three-dimensional atomic structure and function of ribozymes, enzymes, and RNA-protein complexes, static and time-resolved X-ray crystallography, development of structure-based anti-viral agents, RNA evolution, origin of catalysis, and the origin of life

Bakthan Singaram Organic synthesis, organoborane chemistry, heterocyclic chemistry, organometallic chemistry, asymmetric synthesis, biosensors, and natural products chemistry

Michael Stone Single-molecule Biophysics and Enzymology; Structure, function, and assembly of the telomerase ribonucleoprotein, Fluorescence Resonance Energy Transfer (FRET), optical/magnetic trapping, sub-diffraction optical imaging of telomeres and the nucleus

Jin Z. Zhang Design, synthesis, characterization and application of nanomaterials, including semiconductor, metal, and metal oxides; femtosecond laser and optical spectroscopy; ultrafast dynamics in condensed phases and at interfaces; solar energy conversion and hydrogen generation and storage; cancer biomarker detection