What tracks are available in the Statistics & Applied Mathematics program?

Statistics and Applied Mathematics: This track is for students emphasizing Statistics.

Applied Mathematics and Statistics: This track is for students emphasizing Applied Mathematics.

What is the unit requirement for the M.S. and Ph.D.?

M.S. Program: 35 units of core courses plus two additional 5-unit courses from an approved list, for a total requirement of 45 units. For the M.S. degree, students will conduct a capstone research project in their second year.

Ph.D. Program: 35 units of core courses plus four additional 5-unit courses from an approved list, for a total requirement of 55 units. Ph.D. students will be required to serve as teaching assistants for at least two quarters during their graduate study. Certain exceptions apply.

What salary (on top of tuition and fees) do first-year Graduate Student Researchers in your program earn?

Our GSRs earn between $5,662-$6,039 per quarter.

When are graduate applications due for your program?

January 3 of each year

Where can I find detailed information about the admission and application process?

ga.soe.ucsc.edu/admissions

Who can I contact for more information?

Athanasios Kottas, Graduate Director
(831) 459-5536, thanos@soe.ucsc.edu

Tracie Tucker, Graduate Program Adviser
(831) 459-5737, ttucker@soe.ucsc.edu

http://ams.soe.ucsc.edu/academics/graduate
Nicholas Brummell Fluid dynamics, magnetohydrodynamics, numerical simulations of geophysical and astrophysical dynamics, especially solar interior physics, supercomputing

David Draper Bayesian statistics, hierarchical modeling, Bayesian nonparametric methods, model specification and model uncertainty, quality assessment, risk assessment, statistical applications in the environmental, medical, and social sciences

Pascale Garaud Astrophysical and Geophysical fluid dynamics, magnetohydrodynamics, analytical and numerical solutions of partial differential equations related to these phenomena

Qi Gong Computational optimal control for nonlinear systems, trajectory optimization and motion planning, optimal search, state and output feedback control of nonlinear systems, aerospace control applications

Rajarshi Guhaniyogi Areal wombling, compressive methods for high dimensional regression, manifold regression, nonparametric Bayes, spatial Bayes modeling for massive geostatistical datasets, applications in epidemiology, forestry, genomics, and neuroscience

Athanasios Kottas Bayesian nonparametrics, mixture models, modeling and inference for point processes, nonparametric regression, survival analysis, applications in biometrics, ecology and environmental sciences

Dongwook Lee Computational mathematics and numerical analysis, computational magnetohydrodynamics and gas dynamics, high-order shock capturing numerical methods, Newton-Krylov-type iterative implicit methods, high-performance computing, numerical modeling of astrophysics and high-energy-density physics

Herbert Lee Bayesian statistics, computer simulation experiments, spatial statistics, optimization, inverse problems, nonparametric regression, classification and clustering

Juhee Lee Bayesian statistics, Bayesian nonparametrics, modeling in biosciences and clinical trials

Marc Mangel Mathematical modeling of biological phenomena, especially quantitative issues in fishery management; mathematical and computational aspects of aging and disease, impact of technology on biological systems

Robin Morris Bayesian analysis of scientific data, with applications in Earth remote sensing, particle and astroparticle physics, signal processing and engineering

Raquel Prado Bayesian non-stationary time series modeling, multivariate time series, biomedical signal processing and statistical genetics

Abel Rodríguez Bayesian nonparametrics, Bayesian time series and spatial models, public health, financial econometrics, structural proteomics

Bruno Sansó Bayesian spatio-temporal modeling, environmental and geostatistical applications, modeling of extreme values, statistical assessment of climate variability

Hongyun Wang Single molecule studies and biophysics, statistical physics, stochastic processes and stochastic differential equations, classical analysis, numerical analysis

Tatiana Xifara Bayesian and computational statistics, hidden Markov models, adaptive MCMC and MALA algorithms, statistical ecology